Informējam, ka Sistēma pielāgota darbam ar interneta pārlūkprogrammu Internet Explorer (8. un jaunākām versijām) un Mozilla Firefox (3.6 un jaunākām versijām).
Izmantojot citu interneta pārlūkprogrammu, brīdinām, ka Sistēmas funkcionalitāte var tikt traucēta.
This International Standard is applicable to X-RAY SOURCE ASSEMBLIES and X-RAY TUBE ASSEMBLIES, for use in MEDICAL DIAGNOSTIC RADIOLOGY for techniques in which the X-RAY PATTERN will be received simultaneously in all points of the IMAGE RECEPTION AREA.
This standard specifies a method for the determination of the greatest geometrically symmetrical RADIATION FIELD at a specified distance from the FOCAL SPOT for which the percentage AIR KERMA RATE along the major axes of the RADIATION FIELD does not fall below a permitted value.
NOTE 1 AIR KERMA or AIR KERMA RATE are the only practical verifiable physical quantities for X-RAY SOURCES. X-RAY SOURCES must be tested independently from MEDICAL ELECTRICAL SYSTEMS. Conversion to the characteristics of the X-RAY IMAGE RECEPTOR used in a MEDICAL ELECTRICAL SYSTEM may be done in addition.
In case multiple FOCAL SPOTS are not super-imposed, each focal spot has its own REFERENCE AXIS. Then the maximum RADIATION FIELD may be given for each FOCAL SPOT separately
NOTE 2 The maximum symmetrical RADIATION FIELD may change from its initial value as the X-RAY TUBE ages through use.
NOTE 3 If, for certain MEDICAL ELECTRICAL SYSTEMs the scope of IEC 60806 does not fit, then the special RADIATION FIELD requirements could be incorporated in the MEDICAL ELECTRICAL SYSTEM particular standard. However, a statement on the RADIATION FIELD while referring IEC 60806 is then no longer possible.
Reģistrācijas numurs (WIID)
73345
Darbības sfēra
This International Standard is applicable to X-RAY SOURCE ASSEMBLIES and X-RAY TUBE ASSEMBLIES, for use in MEDICAL DIAGNOSTIC RADIOLOGY for techniques in which the X-RAY PATTERN will be received simultaneously in all points of the IMAGE RECEPTION AREA.
This standard specifies a method for the determination of the greatest geometrically symmetrical RADIATION FIELD at a specified distance from the FOCAL SPOT for which the percentage AIR KERMA RATE along the major axes of the RADIATION FIELD does not fall below a permitted value.
NOTE 1 AIR KERMA or AIR KERMA RATE are the only practical verifiable physical quantities for X-RAY SOURCES. X-RAY SOURCES must be tested independently from MEDICAL ELECTRICAL SYSTEMS. Conversion to the characteristics of the X-RAY IMAGE RECEPTOR used in a MEDICAL ELECTRICAL SYSTEM may be done in addition.
In case multiple FOCAL SPOTS are not super-imposed, each focal spot has its own REFERENCE AXIS. Then the maximum RADIATION FIELD may be given for each FOCAL SPOT separately
NOTE 2 The maximum symmetrical RADIATION FIELD may change from its initial value as the X-RAY TUBE ages through use.
NOTE 3 If, for certain MEDICAL ELECTRICAL SYSTEMs the scope of IEC 60806 does not fit, then the special RADIATION FIELD requirements could be incorporated in the MEDICAL ELECTRICAL SYSTEM particular standard. However, a statement on the RADIATION FIELD while referring IEC 60806 is then no longer possible.