Informējam, ka Sistēma pielāgota darbam ar interneta pārlūkprogrammu Internet Explorer (8. un jaunākām versijām) un Mozilla Firefox (3.6 un jaunākām versijām).
Izmantojot citu interneta pārlūkprogrammu, brīdinām, ka Sistēmas funkcionalitāte var tikt traucēta.
<p class="MsoBodyText"><span lang="EN-GB">This document establishes general common organizational approaches, regardless of the type, size or nature of the applying organization, to ensure data quality for training and evaluation in analytics and machine learning (ML). It includes guidance on the data quality process for:</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">supervised ML with regard to the labelling of data used for training ML systems, including common organizational approaches for training data labelling;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">unsupervised ML;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">semi-supervised ML;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">reinforcement learning;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">analytics.</span></p>
<p class="MsoBodyText"><span lang="EN-GB">This document is applicable to training and evaluation data that come from different sources, including data acquisition and data composition, data preparation, data labelling, evaluation and data use. This document does not define specific services, platforms or tools.</span></p>
Reģistrācijas numurs (WIID)
81093
Darbības sfēra
<p class="MsoBodyText"><span lang="EN-GB">This document establishes general common organizational approaches, regardless of the type, size or nature of the applying organization, to ensure data quality for training and evaluation in analytics and machine learning (ML). It includes guidance on the data quality process for:</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">supervised ML with regard to the labelling of data used for training ML systems, including common organizational approaches for training data labelling;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">unsupervised ML;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">semi-supervised ML;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">reinforcement learning;</span></p>
<p class="ListContinue1" style="mso-list: l0 level1 lfo1;"><!-- [if !supportLists]--><span lang="EN-GB" style="mso-fareast-font-family: Cambria; mso-bidi-font-family: Cambria;"><span style="mso-list: Ignore;">—<span style="font: 7.0pt 'Times New Roman';"> </span></span></span><!--[endif]--><span lang="EN-GB">analytics.</span></p>
<p class="MsoBodyText"><span lang="EN-GB">This document is applicable to training and evaluation data that come from different sources, including data acquisition and data composition, data preparation, data labelling, evaluation and data use. This document does not define specific services, platforms or tools.</span></p>