Informējam, ka Sistēma pielāgota darbam ar interneta pārlūkprogrammu Internet Explorer (8. un jaunākām versijām) un Mozilla Firefox (3.6 un jaunākām versijām).
Izmantojot citu interneta pārlūkprogrammu, brīdinām, ka Sistēmas funkcionalitāte var tikt traucēta.
<p>ISO 20998-3:2017 gives guidelines for ultrasonic attenuation spectroscopy methods for determining the size distributions of one or more material phases dispersed in a liquid at high concentrations, where the ultrasonic attenuation spectrum is not a linear function of the particle volume fraction. In this regime, particle-particle interactions are not negligible. </p>
<p>ISO 20998-3:2017 is applicable to colloids, dispersions, slurries, and emulsions. The typical particle size for such analysis ranges from 10 nm to 3 mm, although particles outside this range have also been successfully measured. Measurements can be made for concentrations of the dispersed phase ranging from about 5 % by volume to over 50 % by volume, depending on the density contrast between the continuous and the dispersed phases, the particle size, and the frequency range<sup>[</sup><sup>9</sup><sup>] [</sup><sup>10</sup><sup>]</sup>. These ultrasonic methods can be used to monitor dynamic changes in the size distribution, including agglomeration or flocculation.</p>
Reģistrācijas numurs (WIID)
67601
Darbības sfēra
<p>ISO 20998-3:2017 gives guidelines for ultrasonic attenuation spectroscopy methods for determining the size distributions of one or more material phases dispersed in a liquid at high concentrations, where the ultrasonic attenuation spectrum is not a linear function of the particle volume fraction. In this regime, particle-particle interactions are not negligible. </p>
<p>ISO 20998-3:2017 is applicable to colloids, dispersions, slurries, and emulsions. The typical particle size for such analysis ranges from 10 nm to 3 mm, although particles outside this range have also been successfully measured. Measurements can be made for concentrations of the dispersed phase ranging from about 5 % by volume to over 50 % by volume, depending on the density contrast between the continuous and the dispersed phases, the particle size, and the frequency range<sup>[</sup><sup>9</sup><sup>] [</sup><sup>10</sup><sup>]</sup>. These ultrasonic methods can be used to monitor dynamic changes in the size distribution, including agglomeration or flocculation.</p>